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Abstract--The flow of thin viscous films over complex surfaces is relevant to the description of heat and 
mass transfer processes in ordered packing materials. Ordered packings, usually made of corrugated sheets 
of metal, plastic or ceramic materials have important operating advantages and usually outperform 
random packings of similar characteristics. A two-dimensional streamline function is used to compute the 
components of the velocity field and to reduce the equations of motion to a single, nonlinear, ordinary 
differential equation for the film thickness. A perturbation solution for small film thickness is developed 
that predicts two film surface maxima for each cycle of the solid surface. Normal film thickness profiles 
are measured in a direction normal to the solid surface, as opposed to experimental film thickness 
measured in a direction normal to the axis of the solid surface. The agreement between experimental and 
theoretical normal film thickness is very good for small values of the parameter 6, defined as the ratio 
of the Nusselt film thickness and the amplitude of the wavy solid surface. 
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1. I N T R O D U C T I O N  

The flow of a liquid film down an inclined plane is important in many chemical engineering 
processes, e.g. film condensation, painting, evaporation and many coating processes. There are 
a number of papers on the experimental and theoretical characterization of falling films, starting 
with the comprehensive review of Fulford (1964). Most papers, however, deal with films on smooth, 
flat surfaces. Few theoretical works (Wang 1981; Dassori et al. 1984; Pozrikidis 1988; Zhao 1991) 
and only one instance of experimental data (Zhao & Cerro 1992) exist on free surface flows over 
solid surfaces with a periodic shape. Wang (1981) studied the three-dimensional flow of a liquid 
over a sinusoidal surface using a perturbation analysis that was limited to small amplitudes of the 
wavy plate as compared to the average depth of the fluid. Wang's (1981) results are relevant for 
the flow of very thick films or for films over periodic surfaces of very small amplitude, i.e. 
micro-structures. Dassori et al. (1984) studied the flow of a thin film in a sinusoidally wavy channel 
with small-amplitude striations along with a countercurrent gas flow. Unfortunately, the choice 
of the cross-section thickness of the gas phase as the characteristic scaling parameter of 
their perturbation renders their results unsuitable for our analysis. More relevant to this study 
are the numerical results of Pozrikidis (1988) where a boundary-integral computational analysis 
of the creep-flow equations of motion is introduced, that is valid for surfaces of arbitrary geometry. 
Pozrikidis' (1988) computations, however, were carried out only for sinusoidal and rectangular 
corrugations. 

Flows of viscous films over complex surfaces occur both in nature and in many chemical 
processes. The primary motivation for this work is the flow of liquid films over ordered packings. 
Ordered packings are widely used in the chemical industry in gas-liquid contacting devices. They 
have a well-defined structure and outperform random packings in difficult separations with pressure 
gradient constraints, low relative volatilities and/or small liquid holdup. Recently, de Santos et al. 

(1991) published a scholarly historical introduction and a comprehensive review of packing 
functionality. Ordered packings are usually made of corrugated sheets that may have been 
mechanically or chemically treated to improve their wetting characteristics. They have a well- 
defined macro- and micro-structure. The macro-structure, in the way of channel geometry 
generated by corrugations, configures the mixing cells for the bulk flow of the vapor phase. The 
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micro-structure, such as surface indentations, perforations, chemical treatment or gauze-like nature 
of  the packing material, plays an important role in sustaining a stable, wetting liquid film. 

The specific problem considered in this work is the steady flow of a viscous liquid film over a 
periodic surface, where the film thickness is small compared to the amplitude and wavelength of 
the solid surface. Thin films are conceptually interesting becuase they can be described by a simple 
streamline function and important in practice because they are representative of the flow over the 
macro-structure of  commercial packings. 

2. PREVIOUS E X P E R I M E N T A L  WORK ON COMPLEX SURFACES 

In the analysis of  viscous films on flat surfaces an important parameter is the Nusselt film 
thickness h*, presented here for a vertical surface: 

The Nusselt film thickness is the average thickness of  a film of  kinematic viscosity v, flowing at 
rate q on a vertical flat surface; g is the acceleration due to gravity. The Nusselt film thickness is 
used here as a characteristic film thickness. Zhao & Cerro (1992) obtained experimental data on 
film thickness and streamline patterns on S surfaces, i.e. surfaces made of a sequence of  concave 
and convex half-circles, approaching a sine-shaped surface. Their data was taken on a brass surface 
of  radius r = 1.5875 × 10-3m (1/16") with amplitude A equal to the radius and wavelength 
a = 6.35 × 10 -3 m. The resulting amplitude/wavelength ratio was 2 = 0.25. From these experiments 
and their own numerical computations (Zhao 1991), Zhao & Cerro (1992) concluded that three 
parameters are needed to correlate the experimental data: (1) the ratio of the Nusselt film thickness 
to the solid surface amplitude, (5 = h*/A; (2) the Reynolds number, Re = q Iv; and (3) the Capillary 
number, Ca = #q/ah*. These three dimensionless parameters represent the three conditions, that 
during experiments can be chosen independently for a given type of  solid surface: (1) flow rate, 
(2) kinematic viscosity and (3) surface tension. 

In their experiments, Zhao & Cerro (1992) analyzed values of the relative thickness parameter 
from 0.24 ~< 6 ~< 0.6. For  flow rates of  industrial interest, this range is representative of  the flow 
over the micro-structure of  ordered packings. Zhao & Cerro (1992) observed that for larger values 
of 6, the free surface of  the liquid film is flat and as the value of 6 decreases, the free surface becomes 
periodic with the same wavelength as that of the solid surface. Even at their lowest experimental 
Reynolds numbers, inertial and capillary effects could not be neglected since streamlines had a very 
small radius of  curvature. The experiments reported here were performed over an S surface and 
fall in the range 0.1 ~< 6 ~< 0.17. These values of  6 are well within the range of values that can be 
found in the operating range of  industrial packing surfaces. 

3. T H E O R E T I C A L  FILM E V O L U T I O N  

For a Cartesian coordinate system defined as shown in figure 1, the position of  the solid surface 
is described by a periodic function of amplitude R and wavelength a. Equation [2] describes two 
smoothly joined half-circles centered at x = x¢ and y = Yc: 

y~ = y: 4- ~/R 2 - (x~ - xc) z. [21 

The tangent to the solid surface defines an angle 0, with respect to the vertical x-direction. This 
angle can be obtained as a function of the geometrical parameters of the solid surface: 

0=arctan(~-~--~)=arctan[  +(x~_--xc)2.] .  [3] 
L,,/R - xo) J 

The physical components of  gravity, i.e. the components of  the vector in a Cartesian system in 
the directions tangential and normal to the solid surface are given as functions of  0: 

g~ = g cos 0 = g [4] 
x/1 + tan 2 0 
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Figure 1. Sketch of the solid surface and definition of the geometric variables. 
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and 

gn = g sin 0 = g tan 0 
~/1 + tan 2 0" [5] 

The physical components of  gravity given by [4] and [5], are double-periodic functions, i.e. elliptic 
functions in the sense defined by Whittaker & Watson (1927), undergoing two periods for every 
period of  the solid surface. Substitution of  the components of  gravity into the linear momentum 
balance equations renders a system of equations with a periodic body force. Based on a single 
unknown function, h(x), a two-dimensional streamline function can be defined and then used to 
compute the physical components of  the velocity vector: 

3q h(-x) 2 [6] ~k(x, y) = -~- 3h(x)3 , 

31p O--~ 2h(x) 3 q [ y  ntx) ( y )2]  vx = = 2 7-7--z, - [71 

and 

y2 y3 ] 
d~b 3q dh 2 [81 

vy= ax= 2dx ~ h~-)'" 

The function h(x) is the local film thickness. The components of  the velocity vector given by 
[7] and [8] satisfy continuity, the non-slip condition at the solid surface and a simple version of  
the free-shear boundary condition at the free surface. Substitution of  [7] and [8] into the linear 
momentum balance in the x-direction results in an ordinary differential equation for the local film 
thickness, h(x). The normal stress boundary condition is introduced in order to compute the 
pressure at the free surface (Higgins et al. 1977): 

p(x, h (x)) = - a 2,,vF, [9] 
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where 2 ~  is the mean curvature of the free surface. In dimensionless form the resulting equation 
is 

Re(~-~-~b '35323 - -  2(])t52 __ 7 ~ 4 4  ' 4  "6323 Jr- i~0 4 2 4 " 5 3 2 3 )  

3 cos 0 4 dO 4 3 5 2 2  d 2 ~  4 '25222 4 )45424 
= cos 04 + ~ 4 52 ~ + sin 043(~)'52 - -  l 3 Ca d ~  + + 

5222 35424  
__ _ _  21 rh 2rh #2,~414 -.L 9 ~/~ 2,,tq,rh,,,' .~4~4 __ _ _  4 3 0  .... [10]  2 0 4 "  - 344'24"5222 + ~,~ ,r . . . .  ~ -  v- ~- v ,~ 20 " 

Equation [10] is the complete form of  the film evolution equation for a free surface flow defined 
by the streamline function ~b(x, y). The left-hand side members of  [10] are the inertial terms. The 
first three members on the right-hand side of  [10] are the body force terms. The number, 1, is the 
leading viscous term of  the linear momentum balance in the x-direction. The term that has the 
Ca and the derivative of  the Gaussian curvature in it, is the capillary contribution to the pressure 
field and the rest are the remaining viscuous terms. 

There are three relevant characteristic lengths in this problem. One of  the characteristic lengths 
is the amplitude of  the solid surface, i.e. the radius of  the "half-circle" surface, A = R. The second 
characteristic length is the wavelength of  the solid surface, a. The ratio between the amplitude of 
the solid surface and the wavelength is the dimensionless wavenumber, 2. The third characteristic 
length is the Nusselt film thickness, h*. The Nusselt film thickness is used as the characteristic 
length in the definition of  the dimensionless film thickness, 4. Implicit is the assumption that the 
thickness of  the viscous film on a periodic surface is of  the same order of  magnitude as the thickness 
of  the film on a flat, vertical surface. The wavelength of the solid surface is used to define the 
dimensionless coordinate length, X. The amplitude of  the solid surface, .4 = R, is used to define 
the dimensionless radius of  curvature, i.e. the inverse of  the dimensionless mean curvature, 2,g~. 
For  a general periodic surface, 2 and 5 can be varied independently. For  all the experiments 
reported in this work, the value of the wavenumber was constant and equal to 2 = 0.25. The 
thickness parameter, 5, can be assumed to be a small number, 0.1 ~< 5 ~< 0.2, such that the product 
of  the thickness parameter and the wavenumber is very small; 0.025 ~< 52 ~< 0.050. 

A perturbation solution can be obtained by introducing a perturbation parameter e, defined by 
the product of  the thickness parameter and the wavenumber, e = 52. It was shown that for the 
range of  interest of  this work, e is indeed a very small number. Rearrangement of  [10] in powers 
of  this perturbation parameter leads to a singular perturbation. For  small average film thickness 
and large solid surface amplitude and wavelength, as was the case in this work, the film evolution 
equation finally reduces to the following algebraic expression: 

where 

[, ( )21/2:cos0; L,2, 
[11] is similar to the Nusselt solution for the flow of  a liquid film over a solid surface inclined at 
a constant angle 0 with respect to the vertical direction. Equation [1 I], however, applies to a thin 
film flowing over a periodic surface for continuously varying values of 0. The description of the 
flow of  a viscous film over a periodic surface, can therefore be approximated by a sequence of 
quasi-steady state Nusselt solutions for viscous film flow over a surface of  varying inclinations: 

1 

i1 ,,3, 
The dimensionless film thickness predicted by [13] is a remarkably simple but accurate 

representation of  the varying thickness of  thin films over a periodic surface. It will be shown that 
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Table 1. Parameters for the experimental data in this work (in all cases the solid surface wavelength was 
a = 0.0254 m and the fluid used was silicone oil) 
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q h* p p o" 
(m3/s-m) (mm) (kg/m 3) (kg/m-s) (N/m) ~ Re Ca 

5 .25E-  06 0.6848 970.4 0.1941 0.0214 0.1078 0.0262 0.1043 
5 .9 1 E-0 6  0.7122 970.4 0.1941 0.0214 0.1122 0.0295 0.1128 
8.20E - 06 0.7946 970.4 0.1941 0.0214 0.1251 0.0410 0.1404 
1.00E - 0 5  0.8490 970.4 0.1941 0.0214 0.1337 0.0500 0.1603 
1.13E - 0 5  0.8846 970.4 0.1941 0.0214 0.1393 0.0566 0.1741 
1.31E - 0 5  0.0929 970.4 0.1941 0.0214 0.1464 0.0656 0.1921 
1 .36E-  05 0.9408 970.4 0.1941 0.0214 0.1482 0.0681 0.1969 
1 .43E-  05 0.9557 970.4 0.1941 0.0214 0.1505 0.0714 0.2032 
1.62E - 0 5  0.9978 970.4 0.1941 0.0214 0.1571 0.0812 0.2214 
1.74E-- 05 1.021 970.4 0.1941 0.0214 0.1608 0.0869 0.2317 
1.79E - 0 5  1.030 970.4 0.1941 0.0214 0.1622 0.0894 0.2361 
1.89E - 05 1.0488 970.4 0.1941 0.0214 0.1652 0.0943 0.2531 
1.98E - 0 5  1.0668 970.4 0.1941 0.0214 0.1679 0.0992 0.2531 
2.05E - 0 5  1.0784 970.4 0.1941 0.0214 0.1698 0.1025 0.2587 
3.44E - 0 5  1.0175 969.8 0.0969 0.0214 0.1602 0.3445 0.2303 
3.51E - 0 5  1.024 969.8 0.0969 0.0214 0.1613 0.0351 0.2332 

[13] agrees very well with the experimental data under conditions where capillary forces are not 
relevant and the relative film thickness is small. 

4. E X P E R I M E N T A L  S E T U P  

The amplitude of  the solid surface is equal to the radius, R = 6.35 x 10 -3 m (0.25") and the 
wavelength is a = 0.0254 m (1"). See figure 1 for a definition of  the geometric variables. The ratio 
of  amplitude to wavelength, 2 = 0.25, was identical to that of  the S surface used by Zhao & Cerro 
(1992). The solid surface used in these experiments was made of stainless steel. Table 1 lists the 
flow rates, Nusselt film thickness, the thickness parameter 6 and the fluid properties, as well as the 
Re and Ca for all experimental runs. 

The experimental setup is shown schematically in figure 2. The test surface is 0.1016 m wide and 
0.1016m long. The test surface is set in a vertical position directly under the flow distributor. 
The narrow slit (0.001 m wide) of  the flow distributor traverses the entire solid surface width to 
ensure a uniform liquid distribution. The liquids used in these experiments were silicone oils, of  
kinematic viscosity 0.1 and 0.2 St, respectively. A constant overflow overhead tank is used to 
maintain a constant liquid flow rate. The tank is placed about 1.5 m above the liquid distributor. 
A micro-pump is used to recycle the liquid back to the overhead tank. Liquid flow rates were 
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Figure 2. Sketch of the experimental apparatus. 
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Figure 3. Liquid film distribution across the experimental solid surface, h* = 7.31 × 10 4 m: ~k', Position 
along the solid surface x = 0.0 m; O, position along the solid surface x = 0.1 m. 

measured by collecting the liquid flowing over the test surface in a graduated measuring cylinder 
over a known period of  time. All experimental measurements were made at steady state, i.e. after 
a constant flow rate was achieved. A very thin needle mounted on an x - y  precision micrometer 
translator is used to detect the position of  the free surface and the solid surface. The minimum 
register of  the x - y  micrometer translators is l 0  -6 m .  The translator ensemble is mounted on a 
vertical tubular bench with a horizontal translator that enables the needle to be placed at any point 
on the test surface. The entire experimental assembly is mounted on the Oriel optical table. 
The back of  the test surface and one end of  the needle are connected to a laboratory ohmmeter.  
Due to the large difference in electrical conductivity between the solid surface and silicone oil, it 
is possible to detect the position of  the solid surface when the needle touches it. This causes the 
ohmmeter  needle to deflect and the micrometer reading can be recorded to obtain the position of  
the solid surface. Since the conductivity of  silicone oil is very low, however, the position of the free 
surface is detected with a combination of  side-lighting and a video-camera zoomed in on the liquid 
surface to detect the location at which the needle first touches the free surface. The micrometer 
reading then, indicates the position of  the free surface. In a typical measurement, the needle is 
originally away from the liquid surface. As the needle moves forward, the position of  the free 
surface is determined by the change in the free surface detected by the enhanced video image. The 
needle then moves forward until it touches the solid surface. This position is detected by the 
deflection of the conductivity meter. While it is not practially possible to align the test surface 
absolutely parallel to the tubular bench carrying the x - y  translators, the error in the position of 
two consecutive solid surface maxima was found to be no greater than 0.3 ° . By repeating the 
procedure described above at any experimental position, several times, it was determined that 
the average deviation in the location of  either the free surface or solid surface was always smaller 
than 10- 5 m. 

Film thickness profiles obtained across the width of  the solid surface, were used to verify that 
the film was uniformly distributed across the test surface. The film thickness measurements shown 
in figure 3 were made across the width of the solid surface at two different x-locations. One of  
the measurements was done at a valley of the solid surface and one at a peak. The edge effects 
are seen only in narrow strips on either side of  the test structure. The corrections to be made in 
the liquid flow rate per unit width to account for these edge effects are < 5% of the total flow rate. 
Film thickness measurements along the length of the solid surface, over a length of  one period, 
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Figure 4. Repeatability of normal film thickness data; h* = 9.97 x 10 -4 m. 
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were also performed at three difference locations, located 0.023, 0.053 and 0.074 m, respectively, 
from the left edge of  the solid surface. The average deviation in film thickness across this width 
was close to 10%. Repeatability of  experimental data was also verified by comparing similar 
experimental runs performed on two different occasions. Figure 4 shows two such experimental 
determinations. The average deviation between the two film thickness profiles was < 5%, indicating 
agreement compatible with experimental error. 

5. C A L C U L A T I O N  OF N O R M A L  FILM T H I C K N E S S  

Film thicknesses were measured experimentally by moving the needle in the direction y, normal 
to the direction of  flow. Figure 5 shows the position of  the solid surface and the free surface for 
a typical experimental run. The film thickness in a fixed coordinate system shown in figure 5 is the 
difference between the y-position of  the free surface and the y-position of  the solid surface• The 
theoretical film thickness, developed for a convective coordinate system and described by [13] is 
measured in a direction normal to the solid surface• In the development of  the perturbation solution, 
it was assumed that the thickness of  the film is of  the same order of  magnitude as the thickness 
of  a film on a flat vertical surface and that the film thickness is many times smaller than the radius 
of  curvature of  the solid surface. 

For  a correct comparison of  experimental and theoretical film thickness profiles, it is therefore 
necessary to calculate the experimental film thickness normal to the solid surface at every point. 
Since the test surface is made of  a collection of  "half-circle" surfaces, the normal to the surface 
must pass through the center of  the circle• A geometrical construction can be used to transform 
the film thickness measured experimentally in the direction normal to the axis of  the solid surface 
into the film thickness measured normal to the local tangent of  the solid surface. The geometrical 
variables are defined in figure 6. 

Assume that the solid surface and the liquid free surface can be described by two continuous 
functions of the position along the direction of flow, f(x) and g(x) respectively. The set of N 
experimental points along the solid surface can bc described as a set x(i) and f(x(i)), for 
i = l ..... N. Each of these points have a unique corresponding point at the liquid free surface 
denoted by Xr(i), gr(X(i)). Notice that the free surface position in the normal direction corresponds 
to the position xs(i) of the solid surface, not the position Xr(i) of the liquid free surface. The set 
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Figure 5. Typical experimental data for film thickness measurement. Silicone oil (200 St), q = 5.25 x 
10 -~ m3/s-m, h*= 6.85 x 10 .4 m: II ,  solid surface; + ,  free surface. 

of coordinates, x(i), f ( x ( i )  and gr(x(i)) determines the position of the solid and free surfaces at 
the position x(i)  along the direction of flow. 

The first step in the execution of the algorithm consists of guessing the position of the interval 
along the free surface intersected by the normal to the solid surface. The normal to the solid surface 
passes through the center of the circle, [xc, yc], and through the point at the solid surface. The slope 
of the normal is given by 

f ( i )  - y ¢  
= [ 14 ]  

ml x(i) - Xc" 

xp),f(xp)] 

x(l+l),f(x(l+' 

)(r(I),yrp) 

x( l+l) ,g(xp+l))  

Figure 6. Geometric variables needed to calculate normal film thickness: 1-], free surface; O,  solid surface. 
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The equation for the normal passing through the points (x( i ) , f ( i ) )  and (x,, Yr) is then given by 

Yr - f ( i )  = m, [xr - x(i)]. [15] 

In addition, the line joining the points at the free surface, ( x ,  Yr), and the experimental points 
[x(i + 1), g(i + 1)] is given by a straight line with slope 

y , -  g(i + 1) 
rn 2 = [16] 

x , -  x( i  + 1)' 

such that the corresponding equation for this line segment is given by 

y r - g ( i  + 1) =m2[Xr-X( i  + 1)]. [17] 

Equations [15] and [16] can be solved for x ,  after eliminating y~, to give 

g(i + 1) - f ( i )  + m2x(i + 1) + mix( i )  
x ,  = [18] 

m I - -  m 2 

If x, < x(i),  then the guess of  the position of  the interval along the surface must be improved 
by making i = i - 1. If, on the other hand, xr > x( i  + 1), then i = i + 1. In both cases, the next 
step consists of  computing a new value of  Xr. With this value of x ,  the value of  y, is obtained by 
rational interpolation of  the free surface experimental data. The film thickness normal to the solid 
surface at (x( i ) , f ( i ) )  is then given by 

h(x) = x/Ix(i) - Xr] 2 -]- [y(i) --yr] 2. [19] 

Figure 7 provides a comparison between the film thickness measured normal to the axis of the 
solid surface and the film thickness measured normal to the solid surface at every point. 

6. R E S U L T S  AND C O M M E N T S  

For small ratios of  Nusselt film thickness to solid surface amplitude, the liquid film closely 
follows the changes in inclination of  the solid surface and the film thickness is seen to be distinctly 
doubly periodic, i.e. two maxima in film thickness are observed for each period of  the solid surface. 
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D i m e n s i o n l e s s  d i s t a n c e  a l o n g  s o l i d  s u r f a c e  ( x / I ) 

Figure 7. Comparison of  film thickness data; h* -- 6.85 × 10 -4 m: ~-,  laboratory coordinates. O,  normal 
to the solid surface, 
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One of the film thickness maxima is nearly always greater than the other one. An explanation of 
this asymmetry may be found in the effect of the gravity field normal to the flow on the pressure 
field. This effect is accounted for in [10] by the term that is multiplied by sin 0. Unfortunately, this 
term does not appear in the lower perturbation solution, [13]. In the region where sin 0 < 0, the 
normal component of gravity will point from the solid surface to the free surface and this 
contribution will decrease the pressure below the free surface. On the other hand, when sin 0 > 0, 
the normal component of gravity points from the free surface to the solid surface and this 
contribution will increase the pressure below the free surface. As the fluid moves over the solid 
surface, transition from a lower than atmospheric pressure to a higher than atmospheric pressure 
region, generates a pressure gradient that accelerates the film flowing over the outer surface and 
decelerates the film flowing over the inner surface. 

Figures 8-10 compare the film thickness calculated using the low Re perturbation solution and 
the experimental film thickness normal to the solid surface. The values of 6 are 0.108, 0.146, and 
0.161, respectively. The agreement between the experimental and theoretical computed film 
thickness is quite good and the discrepancies between these values are within the limits of 
experimental error. Most striking is the coincidence of the positions of the maxima and minima 
of the experimental and theoretical film thickness. The normal film thickness data of Zhao & Cerro 
(1992), obtained on the solid surface with wavelength = 6.35 x 10 -3 m (1/4") were also compared 
with the thin film perturbation solution (figures 11 and 12). The experimental normal film 
thicknesses generated with this smaller surface for the concave region of the solid surface are 
considerably larger than the values predicted by theory. The film thickness profiles, i.e. the thickness 
measured along the axis of the solid surface, are single-periodic with a wavelength equal to the 
wavelength of the solid surface. The position of the normal film thickness peaks along the solid 
surface, show remarkably good agreement between theoretical and experimental values. 

To highlight the role of the relative ratio of film thickness to surface amplitude, the effect of 
Nusselt film thickness on the normal film thickness profiles was explored for a wide range of values 
of 6. Figure 13 shows the normal film thickness of silicone oil for 0.083 ~< 6 ~< 0.475. For very small 
values of 6, the normal film thickness profile is distinctly double-periodic with respect to the solid 
surface wavelength. There are two maxima of nearly equal height and the regions of minima are 
very close for the concave and convex sectors of the solid surface. Increasing the flow rate, and 
consequently the value of 6, a smooth transition occurs whereby the concave section of the solid 
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Figure 8. Compar ison  o f  experimental normal  film thickness with the perturbation solution [14]; 
a = 0.0254 m, h * =  6.85 x 10-4m: l ,  experimental; + ,  theoretical. 
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surface becomes increasingly filled with liquid and the overall shape of the liquid surface departs 
from the theoretically predicted shape. The concave sections of the solid surface are now very 
different from the convex section and the overall shape of the free surface is periodic with a 
wavelength equal to the wavelength of the solid surface. 

Two other important parameters are used to correlate the experimental data: (1) the amplitude 
ratio of film thickness to solid surface amplitude; and (2) the phase shift. These two parameters 
can be defined with respect to the free surface position or with respect to the actual film thickness. 
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Figure I0. Comparison of  experimental normal film thickness with the perturbation solution [14]; 
a = 0.0254m, h * =  1.021 x !0 -3 m; I1, experimental + ,  theoretical. 
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Figure 11. Comparison of experimental normal film thickness with the perturbation solution [14]; 
a = 0.00635 m, h* = 7.5 × 10-4m; E, experimental +, theoretical. 

The amplitude of  the liquid film thickness is defined as one-half the difference between the 
maximum and the minimum thickness of  the periodic pattern. The amplitude ratio,/7 is computed 
by dividing the experimental film thickness amplitude by the Nusselt film thickness: 

hma  x - -  hmi n 
/7 -- 2h* ' [20] 
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Figure 12. Comparison of experimental normal film thickness with the perturbation solution [14]; 
a = 0.00635 m, h* =6.0 x lO-4m; m, experimental +, theoretical. 
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Figure 13. Effect of  Nusselt film thickness on normal film thickness profiles t~: C), 0.0836; I-q, 0.1078; <>, 
0.1482, ~-, 0.1575; ,0.1602; &, 0.2393; + ,  0.2583; 0 ,  0.4724. 

where h,,~ is the maximum film thickness of  free surface position and hmi n is the minimum film 
thickness or free surface position. The phase shift, to, is the difference in degrees between the 
angular position of  the minimum in the solid surface shape and the angular position of  the 
minimum in the free surface position or film thickness: 

o9 = 0fs -- 0,,. [21] 
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Figure 14. Experimental amplitude ratios; a --0.0254 m: I ,  based on a free surface; + ,  based on film thickness. 
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The phase shift and the amplitude of the free surface are relevant to the mass transfer processes. 
The phase shift and amplitude of the film thickness are relevant to film stability and dry patch 
formation. Figures 14 and 15 show the amplitude ratios and phase shifts as function of the Nusselt 
film thickness. Since the liquid film closely follows the contour of the solid surface, the amplitude 
ratio based on the free surface position is much higher than that based on the film thickness. It 
is interesting here to observe that for a periodic surface with a lower amplitude (Zhao & Cerro 
1992), the amplitude ratio based on the film thickness was greater than that based on the free 
surface. It is observed that, whereas the amplitude ratio based on the free surface position decreased 
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Figure 16. Parity plot of amplitude ratios based on free surface position; a = 0.0254 m. 
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linearly with an increase in the Nusselt film thickness, the amplitude ratio based on the film 
thickness remained relatively unchanged. This indicates that the free surface becomes flatter as the 
flow rate increases. Figure 15 shows that the solid surface minimum coincides with the position 
of the free surface minimum and a minimuim in the film thickness. The other minimum in film 
thickness lags the minimum solid surface position by nearly 180 °. Figure 16 presents a parity plot 
of the experimental and theoretical (from low Re perturbation solution) values of the amplitude 
ratio based on the free surface position. 

7. CONCLUDING REMARKS 

A two-dimensional streamline function was used to derive the complete form of the film 
evolution equation for flow of a thin viscous film over a complex surface. It can be seen from the 
film evolution equation that except in cases of extremely high surface tension, inertial and capillary 
effects amount to an order e contribution to the free surface profile, for small values of iS. Therefore, 
over the range of parameters studied in this work, there is a dynamic local equilibrium between 
gravity and viscous forces in the liquid film. The zero-order solution of this nonlinear ordinary 
differential equation is therefore similar to a sequence of quasi-steady-state Nusselt solutions for 
viscous film flow over a surface of continuously varying inclinations 0 with respect to the vertical. 
The local values of 0 are determined by the amplitude of the solid surface and by the local normal 
to the free surface. Agreement between experimental and theoretical normal film thickness is very 
good for small values of ~. When fi increases, either by increasing the flow rate or decreasing the 
solid surface amplitude, inertial and capillary effects cannot be neglected. Higher order solutions 
of [10] can be designed to include these effects. 
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